
The Ambient Computational Environments
Architecture for Reliable, Secure,

and Pervasive Computing

Renzo Hayashi, Leon Searl, and Gary Minden

ITTC-FY2002-TR-23150-01

April 2002

Copyright © 2002:
The University of Kansas Center for Research, Inc.,
2335 Irving Hill Road, Lawrence, KS 66044-7612.
All rights reserved.

Project Sponsor:
U.S. Air Force and the Defense Advanced Research

Projects Agency under contract no. F30602-00-2-0581
and The National Science Foundation

under grant EIA-9972843

Technical Report

The University of Kansas

Abstract

During the past few years, the technology world has become more and more

geared towards the next generation of Internet connectivity. How to integrate a

myriad of devices and technologies into one easily accessible network of user-

friendly computational resource became the next challenge.

The ACE - Ambient Computational Environments - architecture aims at high-

scale and seamless integration of services (which can be defined as user applications

or programs) and devices within a secure network and onto a robust framework. This

architecture also allows for easy introduction of new services and devices, enabling

the environment to adapt to new technologies and user needs. Such environments

allow users to interact with it and to access computational resources from anywhere at

the touch of a button or with a spoken command. The ACE infrastructure consists

mainly of ACE service daemons, which are the building blocks of ACE services.

These daemons, along with a secure, reliable, and persistent state storage comprise

the basis of the ACE system architecture.

This study is intended to outline the architecture of the ACE project, to

illustrate the usefulness of ACE and its applications, and obtain some insight from

other similar projects in academia and businesses as to how feasible and worthwhile

the ACE approach is.

 ii

Contents

LIST OF FIGURES .. IV

1 INTRODUCTION... 1
1.1 ACE SERVICES AND ACE USERS .. 3
1.2 HUMAN INTERACTION WITHIN ACE.. 4
1.3 ACE USER WORKSPACES .. 8

2 ACE SERVICE DAEMON INFRASTRUCTURE.. 9
2.1 THE ACE SERVICE DAEMON ... 10

2.1.1 Daemon Design... 11
2.2 ACE SERVICE COMMAND LANGUAGE... 13
2.3 ACE SERVICE DAEMON HIERARCHY & SERVICE IMPLEMENTATION........... 16
2.4 SERVICE DISCOVERY – ACE SERVICE DIRECTORY 18
2.5 ACE DAEMON NOTIFICATIONS.. 21
2.6 DAEMON STARTUP... 23

3 ACE SECURITY AND AUTHENTICATION .. 26
3.1 ACE COMMUNICATIONS.. 26
3.2 ACE SERVICE ACCESS AND AUTHENTICATION ... 27

4 BASIC ACE SERVICES.. 30
4.1 HRM – HOST RESOURCE MONITOR .. 31
4.2 SRM – SYSTEM RESOURCE MONITOR... 31
4.3 HAL – HOST APPLICATION LAUNCHER... 32
4.4 SAL – SYSTEM APPLICATION LAUNCHER ... 33
4.5 WSS – WORKSPACE SERVER... 33
4.6 ACE ID MONITOR SERVICE .. 34
4.7 AUD – ACE USER DATABASE SERVICE ... 35
4.8 ACE FIU – FINGERPRINT IDENTIFICATION UNIT... 36
4.9 ACE IBUTTON READER SERVICE .. 37
4.10 ACE AUTHORIZATION DATABASE SERVICE .. 37
4.11 ACE ROOM DATABASE SERVICE... 38
4.12 ACE CONVERTER SERVICE.. 39
4.13 ACE DISTRIBUTION SERVICE .. 40
4.14 ACE NETWORK LOGGER SERVICE .. 41

 iii

4.15 A HIGH-LEVEL SERVICE EXAMPLE.. 41

5 ACE USER APPLICATIONS ... 45
5.1 TEMPORARY APPLICATIONS... 45
5.2 RESTART APPLICATIONS .. 46
5.3 ROBUST APPLICATIONS.. 47
5.4 VNC & ACE USER WORKSPACES .. 48
5.5 O-PHONE & ACE COMMUNICATIONS ... 50

6 ACE PERSISTENT STORE.. 52

7 ACE SCENARIOS.. 55
7.1 SCENARIO 1 – NEW USER & USER WORKSPACE ... 55
7.2 SCENARIO 2 – USER IDENTIFICATION .. 58
7.3 SCENARIO 3 – USER WORKSPACE.. 58
7.4 SCENARIO 4 – MULTIPLE USER WORKSPACES... 60
7.5 SCENARIO 5 – ACE SERVICES & DEVICES .. 61

8 RELATED WORK ... 62
8.1 UC BERKELEY – NINJA PROJECT... 62
8.2 MIT – OXYGEN PROJECT... 66
8.3 IBM CORPORATION – WEBSPHERE ... 68
8.4 SUN MICROSYSTEMS – JINI.. 70

9 IMPROVEMENTS & FUTURE WORK ... 73

10 CONTRIBUTIONS & INNOVATIONS... 75
10.1 ACE’S INNOVATIONS... 75
10.2 PERSONAL CONTRIBUTIONS... 77

11 CONCLUSIONS ... 79

BIBLIOGRAPHY... 81

 iv

List of Figures

FIGURE 1: EXAMPLES OF ACE INTERACTION DEVICES... 5

FIGURE 2: AN EXAMPLE OF AN ACE SERVICE CONTROL GUI. .. 6

FIGURE 3: SOME OTHER ACE USER INTERACTION DEVICES (DSC IBUTTON [12], SONY

FIU [14], COMPAQ IPAC [15], SONY VAIO NOTEBOOKS [16], SONY VAIO
PICTUREBOOKS [17]). .. 7

FIGURE 4: HOW ACE SERVICE DAEMONS INTERACT TO PROVIDE COMPLEX

CAPABILITIES AND COMPUTATION.. 10

FIGURE 5: HOW ACE COMMANDS ARE BUILT, TRANSMITTED, AND INTERPRETED FOR

ACE DAEMON COMMUNICATIONS. .. 15

FIGURE 6: A PART OF THE ACE SERVICE DAEMON HIERARCHY. 17

FIGURE 7: AN EXAMPLE OF HOW SERVICES INTERACT WITH THE ASD FOR SERVICE

LOOKUP.. 20

FIGURE 8: ACE SERVICE NOTIFICATIONS – AN INHERENT ASPECT/CAPABILITY OF ACE

SERVICE DAEMONS. SERVICES KEEP RUNNING LISTS OF WHICH SERVICES TO NOTIFY
WHEN CERTAIN COMMANDS HAVE BEEN EXECUTED BY THE DAEMON. 22

FIGURE 9: A STEP-BY-STEP PROCESS THAT ALL ACE DAEMONS GO THROUGH TO

INITIALIZE THEMSELVES INTO AN ACE. ... 24

FIGURE 10: A DEPICTION OF HOW THE ACE SERVICE INFRASTRUCTURE WORKS WITH

AN AUTHENTICATION DATABASE SERVICE TO STORE AND MANAGE KEYNOTE
CREDENTIALS AND ASSERTIONS IN ORDER TO VERIFY USER PERMISSIONS AND
SYSTEM ACCESS TO ACE SERVICES AND INFORMATION... 28

FIGURE 11: HOW HRM’S WORK TOGETHER WITH A LOCAL NETWORK LEVEL SRM TO

PROVIDE CLIENTS WITH INVISIBLE DISTRIBUTION OF COMPUTATIONAL RESOURCES... 32

FIGURE 12: AN ACE USER DATABASE SERVES AS AN INTERFACE FOR SERVICES

WISHING TO STORE AND/OR ACCESS USER IDENTIFICATION INFORMATION FROM
THE DATABASE... 36

 v

FIGURE 13: AN EXAMPLE OF HOW A VIDEO STREAM IS SENT THROUGH AN ACE
CONVERTER SERVICE FOR FORMAT CONVERSION BEFORE DATA STORAGE/USAGE..... 40

FIGURE 14: A DEPICTION OF AN ACE DISTRIBUTION SERVICE FORWARDS DATA FROM

ONE SOURCE TO ONE OR MORE ACE SERVICES... 40

FIGURE 15: AN EXAMPLE OF HOW BASIC ACE SERVICES CAN BE COMBINED TO

PERFORM HIGH-LEVEL AUDIO STREAMING, CONFERENCING, COMMANDING, AND
RECORDING. ... 42

FIGURE 16: HOW VNC WORKS TO PROVIDE VIRTUAL USER WORKSPACE ACCESS FROM

REMOTE ACCESS POINTS AROUND THE NETWORK WHILE RUNNING ON A SEPARATE
HOST MACHINE... 49

FIGURE 17: THE FIRST CONCEPTUAL FRAMEWORK OF HOW A CLUSTER OF THREE

PERSISTENT STORE SERVERS SHALL WORK TOGETHER TO PROVIDE REDUNDANT
AND ROBUST STORAGE OF ACE SERVICE AND APPLICATION STATE, PROVIDING THE
FOUNDATION FOR ACE ROBUST APPLICATIONS AND SERVICES.................................. 53

FIGURE 18: A DIAGRAM OF HOW ALL ACE SERVICES ARE INTERCONNECTED TO

PROVIDE ACE USERS WITH IDENTIFICATION CAPABILITIES AND USER
WORKSPACES. .. 57

FIGURE 19: THE STEPS EXECUTED BY AN ACE TO VERIFY A USER AND DISPLAY THE

USER’S WORKSPACE AT HIS/HER ACCESS LOCATION. .. 59

 1

Chapter 1

 Introduction

 In today’s world more and more people talk about the next step in Internet

accessibility. Terms such as pervasive computing, wireless Internet access, and

everywhere computing [1][2] are heard. The concept of having computational

resources available to anyone, anywhere, at the touch of a button or the utterance of a

spoken command has been in the minds of many researchers and developers

throughout universities and businesses alike. The consumer world is also constantly

being bombarded with more and more gadgets and new software for PCs and

workstations in order to “facilitate” our lives when, in actuality, their sheer numbers

make us all the more confused. It would be advantageous to free ourselves of our

cellular phones, pagers, electronic agendas, the files we have on our office PCs, and

the tiny pieces of data that scattered everywhere in our attempt to organize our lives

and have it all readily available at our fingertips and in one place. To do so, we must

create an all-encompassing and ubiquitous/pervasive computational environment that

allows “computers… …to enter the human world rather than the other way around.”

[3]. That is, computers should adapt to our needs and make it easy to access our

information and tools from any given location and to invisibly provide distributed and

readily available computational power to its users [4]. This concept led to the birth

and development of the Ambient Computational Environments project at the

 2

Information and Telecommunication Technology Center at the University of Kansas

[5].

ACE, as it is referred to, and its structure is an intricate system of services all

interconnected via a large computer network to provide a wide range of capabilities to

its clients and users. These services must coexist and work together seamlessly to

provide a long-lived and robust environment where users can access computational

resources on demand.

 In order for these services to provide such invisible integration of capabilities

within a highly complex system it becomes necessary to develop a very modular and

flexible service infrastructure. Here, an outline and a detailed description of the top-

level view of the entire ACE service architecture shall be given. This document

covers the basic infrastructure of the ACE system, the types of services it can and

should provide, and how all these services interact to accomplish their tasks and serve

ACE users. This document is intended to be an all encompassing bird’s eye view

description of ACE and its architecture.

This architecture is divided into many unique application and design areas, all

of which shall be discussed in this paper. These main areas are as follows: ACE

users and human interaction with widespread service accessibility (including user

work contexts); ACE service daemon infrastructure; ACE security and

authentication; basic ACE framework services; ACE user applications (including

some legacy apps), and persistent store.

 3

 All of the design elements that shall be discussed here have either already

been implemented and tested or are currently under development. At the conclusion

of this paper, some scenarios shall be presented, some insight shall be given into

related projects, and suggestions and improvements for future ACE work shall be

presented.

 So, before continuing and further delving into the ACE architecture, some

terminology and concepts must be defined and discussed.

1.1 ACE Services and ACE Users

What exactly is the concept of an ACE service? An ACE service is any

computational, data access, or multimedia resource provided by an ACE to an ACE

user or another ACE service. Examples of this would be PTZ – Pan Tilt Zoom

camera controls, data storage or general-purpose applications, user identification

readers, etc. Note that unlike many other similar projects [6][7] ACE considers all

capabilities and resources made available to end consumers to be ACE services.

Exactly how these services are designed and how they interact shall be further

discussed later. So who are the end consumers of these services?

They are the ACE users. ACE users can be separated into two main

categories: human users and non-human users. Non-human users are high-level

applications that utilize ACE services on their own to provide automation within an

 4

ACE. Examples of this would be video monitoring systems, personnel tracking

systems, etc.

The bulk of ACE system usage shall come from human users. These shall be

the focus of this paper. Furthermore, from now on, ACE users shall strictly refer to

human users.

 Human users are the ones who shall be accessing an ACE environment given

proper identification and calling on ACE services to command devices and utilize the

ACE distributed computing power.

1.2 Human Interaction Within ACE

 ACE users can utilize an ACE in various and unlimited ways. It all depends

on the services that are defined within a specific ACE and how these are

interconnected to provide specific functionality.

 ACE users can interact with an ACE through various different ACE enabled

devices. In order for a device to be ACE enabled, it must have low-level interface

software developed for it so that ACE services may communicate with them and

provide ACE users with access to their capabilities. Such devices include PTZ (Pan-

Tilt-Zoom) cameras, projectors, identification devices such as fingerprint scanners

and iButton readers [12], etc. Other devices such as notebooks, picturebooks, PDAs

(Personal Digital Assistants), and workstations simply serve as networked access

 5

points to the ACE network. These devices can be placed throughout an ACE within

conference rooms, offices, hallways, and even automobiles.

PTZ
Cameras Projectors

Access Terminals

FIGURE 1: EXAMPLES OF ACE INTERACTION DEVICES.

User interaction isn’t limited to the devices mentioned above. Many forms of

interaction with an ACE shall come from high-level programs and GUIs (Graphical

User Interfaces) intended to accept ACE user commands, interpret these commands,

and call on other ACE services to execute them.

Below is a picture of one of the graphical user interfaces already implemented

and working within our current version of ACE. This GUI is an example of how

users may access an ACE and control devices and services available.

 6

ACE Control Graphical User Interface

FIGURE 2: AN EXAMPLE OF AN ACE SERVICE CONTROL GUI.

On the left side, available ACE services and devices are listed in a hierarchical

tree fashion based on their location within ACE (e.g. specific rooms in a building).

By selecting a service or device on the left side, the appropriate parameter controls

are displayed to the right. The example seen in the GUI above is for the PTZ camera.

Notice that the right side allows the user to control parameters such as x, y, and z

spatial coordinates of where the camera is pointed at, the resolution and frame rate of

image capturing, zoom factor, and also provides an on/off button to switch the camera

on and off.

Examples of other user interaction software are voice recognition systems,

voice command interpreters, computer speech synthesis systems, device control

 7

graphical interfaces, face and gesture recognition systems, sound triangulation

systems, user locators and trackers, audio and video streaming, telephone over IP

systems, etc.

 All these devices and software services are integrated into the ACE

architecture and infrastructure (which shall be further discussed below) and thus can

easily communicate with each other and form a seamless network of services.

ACE Interaction Devices

iButtons

iPacs

Fingerprint
Scanners

Vaio
Picturebooks

Vaio
Notebooks

FIGURE 3: SOME OTHER ACE USER INTERACTION DEVICES (DSC IBUTTON [12], SONY

FIU [14], COMPAQ IPAC [15], SONY VAIO NOTEBOOKS [16], SONY VAIO

PICTUREBOOKS [17]).

 8

1.3 ACE User Workspaces

 Another significant form of access that an ACE provides for its users is a user

workspace. An ACE user workspace is a virtual computational space/environment

that a user may utilize to run his/her applications and access the ACE network. This

virtual space is defined physically as the graphical space on a terminal or workstation

screen where a user’s file space can be accessed, applications and programs can be

executed, and computational power utilized.

A user may have more than one instance of a workspace defined for

him/herself. In each workspace the user may run different programs while accessing

the same user file space.

 In an ACE, a user may identify him/herself via an ACE identification device

in order to have his/her active workspace brought up on demand independent of

where the user is within the environment. Through his/her active workspace, the user

may bring up necessary files and run desired applications. Then, upon leaving or

logging off from a certain access location within an ACE, the workspace and its

current state are maintained. The user can then pick up where he/she left off at

another access point at a later time.

 In a sense, a workspace is a virtual version of a user’s personal desktop

computer. The difference is that it has no physical dimensions. Therefore it may be

taken immediately to an access location where the user is and utilized on demand.

 9

Chapter 2

 ACE Service Daemon Infrastructure

As mentioned before, an ACE service can be any capability provided by ACE

whether this be data processing, data input, data storage, data transmission, device

control, network access, etc. In order to provide ACE users with a wide range of

distributed services and as part of the ACE requirements of modularity and flexibility,

it became obvious that ACE in itself would not be a single all knowing omnipotent

computational entity that controlled all sub-environments within a single ACE. In

fact, the concept of ACE required much the opposite style of computing where small,

independent, and distributed systems work together to endow ACE with its unique

capabilities. These simple systems can then come together like building blocks or

lego pieces to provide more complex functionalities, output, and/or behavior.

 This reasoning led to the design of a basic ACE service daemon that is

responsible for performing a single, unique, and well defined function within the

ACE infrastructure. Thus, different and specialized daemons comprise the building

blocks of the ACE world. These are the independent pieces that work together to

provide a variety of more complex services/capabilities within ACE.

 These unique services/daemons act as independent entities with unique

capabilities and can serve as both consumers and producers of services to any other

 10

service. They must communicate with each other in a common all encompassing

language that can be easily decomposed and interpreted for issuing commands and

transmitting data. The diagram below depicts this concept.

Daemon

Daemon

Daemon

Daemon

Daemon

Database
Storage &
Retrieval

Device
Output

Device
Control

Processing /
Conversion

Device
Input

FIGURE 4: HOW ACE SERVICE DAEMONS INTERACT TO PROVIDE COMPLEX

CAPABILITIES AND COMPUTATION.

2.1 The ACE Service Daemon

Each service and/or device within an ACE is controlled directly by a unique

instance of an ACE service daemon. This daemon is responsible for being an

intermediary between the service/device control platform and the client wishing to

 11

utilize the service/device. Note here that when a reference is made to a “client”

within an ACE that may refer to any kind of entity attempting to communicate and/or

request services from an ACE daemon. Such an entity may be a simple client

program or yet another ACE service daemon.

The daemon provides a structure for encrypted and certified socket

communications, service registration, and lease renewal (all of which shall be

discussed later). With this framework in place, implementing a service daemon and

along with all its necessary functions and command language semantic definitions

(based on an ACE command language - explained later) becomes a simple, standard,

and modular task. As services are implemented these can then be made to talk to one

another and provide services to one another. Thus building a complex system of

ACE services becomes a matter of simply defining functions and proper interface

commands between such services.

Each ACE daemon runs on its own thread of execution and thus is an

independent entity and may be run on separate machines spread throughout an ACE

network. Furthermore, each machine/computing system in an ACE may have one or

more ACE service daemons running within it, each providing a specific service.

2.1.1 Daemon Design

 12

The statement made earlier about each daemon running on its own thread of

execution is true to a certain extent. It is true in that each daemon becomes a single

and independent entity as far as executing code and providing services.

In fact, each daemon consists of four threads that continuously run to endow

the ACE service daemon with its communication and service rendering capabilities.

These threads are the main thread, the command thread, the data thread, and the

control thread. The command thread is the only one created on a per connection

basis. Therefore a daemon may have more than one command thread running.

Each of these threads work independently of each other when communicating

with other daemons and when providing services. This is done in order to take

advantage of concurrency within multiprocessor machines running these daemons

and to separate communications from control and data streaming capabilities required

of an ACE daemon.

The main thread is responsible for initializing the daemon upon startup

(service registration, KeyNote authentication, etc) and managing the other threads.

The command thread handles the creation of socket communications between a client

and the service daemon itself and listens on the incoming connection for commands.

The data thread is responsible for handling any data stream operations over a UDP

channel. The control thread handles the execution of commands sent in through the

command thread and to service notifications if necessary.

All communications between these threads are carried out over message

queues that trigger actions as these messages are sent from one thread to another.

 13

From this setup, ACE daemons become very independent and highly efficient

shells that serve as the basis for ACE services. As services are performed or

commands executed, more messages can be received, and others may be sent out, all

independent of each other and concurrently.

2.2 ACE Service Command Language

As previously stated, the services within ACE share a common control

language. This language is used by the ACE daemons to communicate both data and

service commands to each other.

 The structure of this command language is based on the simple command and

arguments construction much like that seen in a regular Unix environment and

contains a few simple data types. Below is the syntactic definition of the ACE

command language.

<CMND> := <CMNDNAME><space>[<ARGLIST>];

<CMNDNAME> := <WORD>

<ARGLIST> := | <ARGUMENT> | <ARGUMENT><space><ARGLIST> |

<ARGUMENT>’,’<ARGLIST>

<ARGUMENT> := <ARGNAME>'='<ARGVALUE>

<ARGVALUE> := <INTEGER> | <FLOAT> | <WORD> | <STRING> |

<VECTOR> | <ARRAY>

 14

<INTEGER> := <any integer valued number>

<FLOAT> := <any real valued number>

<WORD> := <contiguous alphanumeric & underscore>;

<STRING> := <WORD> | "<contiguous printable characters>"

<VECTOR> := {[<INTEGER>]’,’…} | {[<FLOAT>]’,’…} |

{[<WORD>]’,’…} | {[<STRING>]’,’…}

<ARRAY> := {<VECTOR_LIST>}

<VECTOR_LIST> := <VECTOR> | <VECTOR>','<VECTOR_LIST>

 For each unique daemon implementation, a set of command and argument

semantics must be defined, within the basic language structure, and tailored to fit the

specific capabilities of that service daemon. That is, for each daemon that is

implemented for a specific service there must also have been defined for it the

commands that it’ll understand, execute, and return (return commands are used to

reply on the status of the attempted command such as successful or failed) and the

arguments that go along with those commands.

All this syntactic and semantic content is stored within a basic ACE service

command data structure used by ACE clients and daemons. This object that is used

for containing and communicating ACE commands is called the ACECmdLine

object. Every command that is to be issued to an ACE service is first built as an

ACECmdLine object. This object is then converted into a string by the issuing

client/daemon and is then transmitted over the network to the receiving side. Once

 15

received, this string is used to construct an exact copy of the ACECmdLine object by

means of the ACE Command Parser. This parser, built uniquely for the ACE project

service daemons, checks the incoming string for syntactic and semantic correctness

(against those parameters defined within the receiving daemon/service) and the new

ACECmdLine object is constructed. Once this is done, the recipient may access the

transmitted content of the command in order to perform its task. The diagram below

depicts this process.

Daemon DaemonCmd
ParserCmdLine Command String CmdLine

CmdLine converted
into a string…

Command string
transmitted over

network…

String converted into a
CmdLine…

Command semantic
definitions…

FIGURE 5: HOW ACE COMMANDS ARE BUILT, TRANSMITTED, AND INTERPRETED FOR

ACE DAEMON COMMUNICATIONS.

 As can be seen, providing ACE with a unique and simple command language

allows for a very lightweight form of communication between services and clients. A

 16

form of communication that is much more lightweight than utilizing something like

RMI.

2.3 ACE Service Daemon Hierarchy & Service
Implementation

 Another significant aspect of the ACE daemon infrastructure is its modularity

and ease of integration into the existing architecture.

The basic service daemon is primarily composed of three modules: the

daemon itself (implementation), the service’s command semantics, and the command

interface to that daemon. Each daemon command interface provides the means by

which users and other services access and command service daemons through the

network.

The service daemon itself is what executes the commands it receives,

operating on data, performing calculations, or serving as yet another interface to

something like a database or GUI.

 The service semantics define the ACE commands and arguments to those

commands that are valid and understandable by the service daemon. These semantics

are used in the construction and parsing of service commands that are transmitted

from one daemon or client to another as was seen in the section 5.2 above.

 Finally, the command interface is what provides users and client programs the

means by which to execute or request services from service daemons. These

 17

interfaces are arranged in a hierarchical manner. In this way, child nodes inherit

methods, characteristics, and actions from the parent nodes. This inheritance is

achieved through the Java API utilized to create our daemon infrastructure. With this

structure, it is easy to develop different services and integrate them into the current

infrastructure. Additionally, with this type of inheritance structure, child nodes can

be developed to be like their parent nodes but with additional functionalities.

 As can be seen from the hierarchy diagram below (Figure 6), all services

inherit from a basic service daemon. These are then divided into more types of

services (only database and device are illustrated here). These in turn define other

child database and device control services. Finally, the device control services can be

further specialized for specific models of PTZ cameras and projectors.

Service

Database Device

PTZ Camera

VCC3 VCC4

Projector

Epson 7350

Service
Directory

Authentication

FIGURE 6: A PART OF THE ACE SERVICE DAEMON HIERARCHY.

 18

 With this infrastructure, new services can be brought online quickly and

painlessly. Device and service specific portions of new services to be added are

isolated to prevent complete re-coding of service daemon specific framework. Also,

changes to the service designs and to their commands can be easily made and

propagated to all child services.

 Another advantage of this modular daemon design is that the underlying

details of the service implementation are completely hidden from the client and its

programmer. All that needs to be known is the command interface to the service and

how to utilize it to obtain the capabilities needed.

2.4 Service Discovery – ACE Service Directory

 If so many different and unique services can be made available within the

ACE infrastructure, how does one service find another? With services distributed

throughout the environment it becomes necessary to provide other services and

clients with the ability to quickly find and connect to desired daemons for specific

needs. ACE needs to provide services with this capability. A capability similar to a

DNS in which a central location or server can be queried for finding specific

machines within a network. ACE needs to supply services with the proper

information for finding other services within the ACE network.

Within this daemon infrastructure it became sensible to make such lookup and

discovery ability yet another service provided by an ACE daemon. This service is

 19

called the ACE Service Directory – ASD. It serves as a central listing or directory of

services currently available and running within the ACE environment. Any and all

ACE services currently active automatically register themselves with the ASD service

(the location of which is known to all ACE daemons) so that other services and

clients know that it is active and available.

 Registered services also automatically remove themselves from the ASD

registry upon shutdown by properly informing the ASD service of their removal.

 Furthermore, if services become inactive due to programming errors or system

crashes, the ASD removes those services from its listing so that other services don’t

waste time and resources attempting to connect to a defunct ACE service. The simple

mechanism that has been implemented to do so is to create service leases within the

ASD. Upon registration with the ASD, each ACE service is given a lease time for

which they’ll be allowed to remain within the ASD listing. If a registered service

fails to renew its service lease with the ASD upon lease time expiration, this service

shall automatically be removed from the ASD. In order to remain in the ASD,

services must periodically issue service lease renewals with the ASD so that they may

remain registered within it. This mechanism accounts for the system failures

mentioned earlier whereby daemons that become inactive due to malfunction are

automatically removed from the ASD once their service lease expires.

 The next diagram (figure 7) demonstrates how the ASD is used.

 20

Client

ASDServices

PTZ Camera
Address??

PTZ Camera
Daemon

Machine25:Port1225
Machine25:

Port1225

PTZ Camera

FIGURE 7: AN EXAMPLE OF HOW SERVICES INTERACT WITH THE ASD FOR SERVICE

LOOKUP.

 Here a client program wishes to communicate with a PTZ Camera service. By

knowing the fixed socket location of the ASD, the program inquires if there are any

PTZ camera services available and if so, where. The ASD looks up its database of

currently active services and finds a PTZ camera service available and responds with

the machine and port address of that service. Once the reply is received, the client

program opens a socket connection to the service at the address specified by the ASD

and begins controlling the camera at that location via ACE commands to the PTZ

camera daemon.

 21

2.5 ACE Daemon Notifications

 Another important component of an ACE service are notification commands.

The basic ACE daemon has incorporated within it the capability of notifying

interested parties (other services) of specific commands that have been issued and

executed.

 This capability is what is called “ACE service notifications” and it is inherent

in all ACE daemons within the Service level (see section 5.3 above). Simply put, all

ACE daemons have notification commands semantically and syntactically defined for

them (i.e. within the ACE command language). These commands allow ACE

services to keep a running list of all other ACE commands that are being “listened”

for and all the ACE services that are to be notified when such commands are

executed.

 For instance, let’s say that an ACE PTZ camera daemon is running within an

ACE conference room. Also, consider a basic requirement that whenever a new

person identifies him/herself at the door, that the camera point towards the door in

order to visualize the new user walking into the room.

 In order for this to occur, a user identification daemon (that controls the

identification of users at specific ID devices) must notify the camera daemon that a

new user has been positively identified at the room door and is walking in. This

prompts the camera to turn towards the door and visualize the user.

 22

 The diagram below (Figure 8) depicts the details of this concept.

Service
Daemon

Commands

Services to be
Notified

Client
Command Executed

Other Services Receive Notification

1

2

3

FIGURE 8: ACE SERVICE NOTIFICATIONS – AN INHERENT ASPECT/CAPABILITY OF ACE

SERVICE DAEMONS. SERVICES KEEP RUNNING LISTS OF WHICH SERVICES TO NOTIFY

WHEN CERTAIN COMMANDS HAVE BEEN EXECUTED BY THE DAEMON.

 Above a client connects to a “Service Daemon” and issues an ACE command

(1). This daemon then looks up its list of commands to see if the command issued is

a command that prompts a notification and if so, which existing services need to be

notified for this command (2). Once the services that require a notification are looked

up by the daemon, the appropriate methods in those other services are invoked thus

 23

effectively notifying these services that a specific command has been executed for the

service daemon at hand (3).

 What exactly does it mean to receive a notification and have appropriate

methods invoked? Furthermore, how do services get added to the notification list to

begin with? When a service deems it necessary to be notified of a specific command

(call this the notified service) within some other service (call this the notifying

service), they issue an “addNotification” command to the notifying service either at

startup or later. This effectively adds the method name of the command interface

object (as seen in section 5.3 above) of the notified service to the list of services to

notify. Once a command is executed within the notifying service, all appropriate

command interfaces of services to be notified are referenced and the listed interface

methods are invoked on those services. This is what it means to receive a

notification.

 This capability is very useful for ACE services in that these can now react to

changes in the environment and appropriately respond to user actions and adapt to

environment activity, crashes, and conflicts simply by notifying each other of such

changes.

2.6 Daemon Startup

Before each unique ACE daemon may start performing the service it was

intended to provide, it must go through a set of simple yet necessary initialization

 24

steps within ACE to establish itself with its surroundings, register itself, and record its

existence.

Unix
Boot
Init

ACE
Service

“foo”
ASD

Room
Database

Net
Logger

Host name “bar”

Host “bar” in Room “hawk”
listening on port 1234

Room name “hawk”

Register: Service Name = “foo”
Host = “bar”
Port = “1234”
Room = “hawk”
Class = “ACEService”

Service “foo” Started!

2

3

5

ACE
Service

Service “foo”
Start Notifications

Room: hawk

Host: bar

Launch1
4

FIGURE 9: A STEP-BY-STEP PROCESS THAT ALL ACE DAEMONS GO THROUGH TO

INITIALIZE THEMSELVES INTO AN ACE.

Consider the diagram above. Upon booting, the Unix machine “bar”

automatically launches the ACE service “foo” (1). The first immediate step the

service “foo” takes after initializing itself and its socket connection on port 1234 is to

contact the ACE Room Database service (discussed later) in order to establish its

location and surroundings and to place itself in the room database as one of the

available services in room “hawk” (2). Next, the service contacts the ASD on a

known socket and registers its information there so that other services in ACE are

able to find it (3). This registration may trigger notifications to other ACE services (if

any are awaiting notifications on it) that this new service “foo” is now running and

 25

available (4). Finally, “foo” contacts the net logging service to register for historical

purposes that the service “foo” has started on host “bar” (5).

Once these steps are complete, the service can now begin performing the

actions it was programmed to do.

 26

Chapter 3

 ACE Security and Authentication

 In this section, ACE security measures shall be discussed. These are

necessary to make ACE a network where only valid users with proper permissions

may run applications, access files, and transmit information in a secure fashion.

3.1 ACE Communications

 As with any network environment, the communication framework must

provide a means of relaying information from point A to point B in a secure manner.

 The security mechanism that has been incorporated into the ACE service

infrastructure in order to make sure that the communication between services and

clients is secure from eavesdroppers and unauthorized entities is the use of SSL

 All ACE communications from one service to another is encrypted using SSL

(Secure Socket Layer) encryption. All the service commands using the ACE

command language and all data transferred between ACE services are encrypted in

this fashion at the socket level.

 27

3.2 ACE Service Access and Authentication

 Within an ACE network ACE users must be given access to underlying

network and also be registered with ACE in order to access and utilize ACE services.

In order to be properly identified within an ACE the user must first access an ACE

user identification device such as a fingerprint scanner, an iButton reader, or a badge

reader. Once this is done and the user has been identified, he/she may access the

services within an ACE. Unfortunately, being a valid ACE user does not get a user

far if he/she doesn’t have valid permissions.

 In ACE, both users and services are restricted in the use of other services and

what commands may be issued. For this purpose, the KeyNote trust management

system [8] has been integrated into the ACE service infrastructure. Both users and

services shall have credentials and assertions defined for what can and can’t be done

within an ACE. These credentials control what commands can be issued, what

services can be accessed, what connections can be made, for how long services can be

utilized, how much of computing resources may be consumed, etc.

 Below is an example of how ACE services verify permissions for a simple

ACE service.

 28

Client ACE
Service

Credentials
DB

Authentication
DB

Service

Credentials

OK

1

2

3

4

5

6

KeyNote

7

FIGURE 10: A DEPICTION OF HOW THE ACE SERVICE INFRASTRUCTURE WORKS WITH

AN AUTHENTICATION DATABASE SERVICE TO STORE AND MANAGE KEYNOTE

CREDENTIALS AND ASSERTIONS IN ORDER TO VERIFY USER PERMISSIONS AND

SYSTEM ACCESS TO ACE SERVICES AND INFORMATION.

 In this example, a client wishes to execute a command on an ACE service (1).

The ACE service recognizes that a command is about to be executed by a specific

client and goes on to request the available KeyNote credentials and assertions for this

command and for this specific client from the Authentication Database Service (2).

This service serves as an interface to the storage and access of credentials and

assertions to other ACE services wishing to verify client trust. The Authentication

DB service looks up the necessary information from the database (3) and returns the

requested information to the ACE service (4). The ACE service then forwards this

 29

information to the KeyNote trust management system (5), which verifies that the

provided credentials and assertions are valid for this type of client and action. Then

either an OK or a NOT OK is replied back to the ACE service as to the validity of the

client’s permissions. In this case, the OK is given (6) and the ACE service performs

the command requested by the client and returns the result of the executed command

to the client (7). Had a NOT OK been given, the ACE service would refuse to

execute the requested command replying that the client did not have valid

permissions for the attempted command.

 30

Chapter 4

 Basic ACE Services

 With the basic concept of ACE and the main daemon framework in place,

basic ACE services that interact with one another and provide a basis for other

higher-level services to be built upon can be constructed.

In this section, some of the basic services that have already been implemented

shall be presented. These services work together to provide ACE with the

accessibility, robustness, and distributiveness that are the main goals behind an

Ambient Computational Environment concept. These services work together to

provide the following ACE capabilities: virtual user workspaces, user registration,

identification, and authentication, service discovery, data conversion and distribution,

and network logging.

 One of these services has already been seen – the ASD – since this was

necessary to understand the basic service discovery within the daemon infrastructure.

Now, some of the other services that provide the basis for the capabilities mentioned

above shall be examined.

 31

4.1 HRM – Host Resource Monitor

 The host resource monitor service provides computational and network

resource status on a single host (the same host this service runs on). The HRM

provides this information in one of two possible ways. It may supply this information

via notification commands (section 5.5 above) to services that request to be notified

or it may be queried for specific information by other services/clients.

 Some of the information that is reported by the HRM to requesting services

include host CPU load, CPU speed (in bogomips), network traffic load, total and

available memory, and disk storage capabilities and size.

 This service shall work in unison with other services to provide ACE with its

distributed and service robustness qualities (detailed in sections to come).

4.2 SRM – System Resource Monitor

 The system resource monitor provides much the same kind of information as

the HRM service but is different in that it serves as the resource monitor for all the

machines running in an ACE environment. As described above, it communicates

with all HRMs below it in order to monitor all computing resources at a system wide

level thus allowing for uniform allocation and distribution of ACE system resources.

It also serves as the resource allocation interface between clients wishing to run

applications within ACE and single hosts executing these applications.

 32

 The following diagram shows this relationship.

SRM

Client

HRMs - Host Resource Monitors

ACE System of Hosts

FIGURE 11: HOW HRM’S WORK TOGETHER WITH A LOCAL NETWORK LEVEL SRM TO

PROVIDE CLIENTS WITH INVISIBLE DISTRIBUTION OF COMPUTATIONAL RESOURCES.

4.3 HAL – Host Application Launcher

 The Host Application Launcher (HAL) is responsible for running/launching

any type of application on specific hosts. If a client wishes to run a certain program

or application on a host, it must first connect to the HAL and request that a specific

application be launched. The HAL then simply runs the requested program on a

selected host utilizing the host’s local resources.

 33

4.4 SAL – System Application Launcher

 The System Application Launcher or SAL is responsible for running a

specific program or application within an ACE local network. Much like an SRM

communicates with one or more HRMs below it to distribute computational

resources, the SAL delegates the responsibility of launching applications within an

ACE to its underlying HALs. Like an HRM, a HAL also resides locally on the host it

launches applications on.

 If an ACE client wishes to run a specific application, it requests that that be

done to the SAL. The SAL then finds an appropriate HAL to launch the application

(randomly or by resource allocation by communicating with the SRM) and delegates

that responsibility to that chosen HAL. The HAL then runs the requested application

locally on its host.

4.5 WSS – Workspace Server

 Another important ACE service is called the Workspace Server. This ACE

service is responsible for creating and removing user workspaces as these get created

and closed by users. It is also responsible for naming and keeping track of instances

of these workspaces that are created for specific users.

 Remember from section 4 above, that a user workspace is a virtual area where

the user runs his/her programs and accesses his/her information. Also remember that

 34

a user may have more than one user workspace running, thus it becomes necessary to

manage these workspaces for each individual ACE user.

 An example of how this service works to provide users with virtual

workspaces shall be given in section 10 below where most of these services shall be

integrated into some typical ACE usage scenarios.

4.6 ACE ID Monitor Service

 This service has the unique job of receiving user identification notifications

(refer to section 5.5 for daemon notifications) from ACE identification devices (such

as a fingerprint scanner service) and initiating the appropriate actions to account for a

positive or negative identification notification.

For instance, let’s say a user wants to have his/her workspace show up on the

screen of an access station after identifying him/herself via a fingerprint scanner. The

user presses his/her fingerprint to the scanner and is positively identified. The

identification device service sends a positive user identification notification to the ID

monitor. This in turn causes the ID monitor to call the workspace server to start up a

workspace viewer on the access station’s screen. If the user is not identified as a

valid user, the ID monitor can then call the appropriate services to deal with that

situation (e.g. if one wants to get extreme, call the FBI alerting service and notify

them of an intruder that must be arrested immediately).

 35

4.7 AUD – ACE User Database Service

 In order for any person to interact with an ACE he or she must be a valid ACE

user. What does this mean? It means that the person is not only a registered user

within the local computer network but also a user registered within ACE. In order to

register a user with ACE, the user must register basic information such as username,

password, full name, identification number (e.g. iButton #, fingerprint scan data, etc),

and public key (hence the reason why the user must be a valid user within the LAN)

with an ACE user management service. This service should manage users and their

information so that other services may or may not grant access to people wishing to

utilize ACE. Such a service must communicate with yet another service called the

ACE User Database.

 This service is simply an ACE interface to a database of valid ACE users and

their pertinent information. The AUD takes insertion and selection query requests

from other authorized ACE services to lookup and modify the database of ACE users.

Access to this service and the user information is not limited to an ACE user manager

but to all other authorized ACE services that wish to find out some information about

a user or users they interact with.

 36

ACE User
Database

Database

Client Client
ClientClient

FIGURE 12: AN ACE USER DATABASE SERVES AS AN INTERFACE FOR SERVICES

WISHING TO STORE AND/OR ACCESS USER IDENTIFICATION INFORMATION FROM

THE DATABASE.

4.8 ACE FIU – Fingerprint Identification Unit

 This service is a simple controller interface for the Sony fingerprint

identification unit model FIU-001/500 [13]. This service communicates directly to

the FIU, loading its tables of known fingerprints, querying it for identification of user

fingerprints, and serving as an interface to other ACE services wishing to identify

someone and/or receive identification notifications.

 37

 So, in other words, the FIU service has been implemented to identify ACE

users via their fingerprints serving as an interface to the Sony FIU device.

4.9 ACE IButton Reader Service

 The IButton service is yet another user identification service that simply

interfaces to the IButton reader [12]. The IButton is a simple solid-state memory

device that stores a unique serial number (see figure 3 above). When associated with

a user, it may be used as an identification device. This ACE service serves to read

these numbers from the IButton reader, identify users based on known users and their

serial numbers stored in the AUD, and interface to other ACE services wishing to

identify someone and/or receive identification notifications.

4.10 ACE Authorization Database Service

 This service, much like the AUD, is a database interface service that stores

user and client service authorization assertions. This service is utilized by ACE

services to lookup certificate assertions for users and other services attempting to

execute specific commands within ACE. These assertions are passed onto KeyNote,

which is used to determine if a proper assertion or chain of assertions are present thus

giving the client permission to perform specific actions.

 38

 This service was already introduced and exemplified as part of section 6.2

above.

4.11 ACE Room Database Service

 In order for ACE services to be spatially aware of their surroundings and also

have some knowledge of where they reside within an ACE, their location information

(along with other data) is kept within an ACE Room Database service. This service is

responsible for storing and supplying services with information such as building

names, room names, names of services located within specific rooms, physical

location of these services in the room, physical dimensions of the room (for modeling

and logistical purposes), etc. For instance, for a user to control a camera daemon and

tell it to move to a specific position within the room, the camera needs to be spatially

aware of its environment. That is, it needs to know where it is located with respect to

locations and other objects within the room so that it may establish a 3D coordinate

system for referencing the room space. Furthermore, services need to know what

other services are in the room so that they may provide users with capabilities at

specific locations within an ACE.

 39

4.12 ACE Converter Service

 The ACE Converter service is basically what it states it is. It performs data

conversion from one format to another. For example, if video information was being

transferred from a camera in the ACE to a file managing system (that is, some video

information was being recorded onto disk) some kind of format conversion (or

compression) should be applied before this data can be stored. In order to do so, an

ACE converter is placed in between the video capture service and the file storage

service. It takes the raw video stream from the camera, converts it to a format such as

MPEG, and sends it to the file manager service for storage.

 This service isn’t limited to this type of conversion. It is capable of

converting from one format to another from a set of known formats. The diagram of

this simple example is shown below.

Video
Capture
Service

File
Storage
Service

Format Conversion

ACE Converter

Raw Video
Transfer

MPEG Data
Transfer

 40

FIGURE 13: AN EXAMPLE OF HOW A VIDEO STREAM IS SENT THROUGH AN ACE

CONVERTER SERVICE FOR FORMAT CONVERSION BEFORE DATA STORAGE/USAGE.

4.13 ACE Distribution Service

 Yet another low-level data transfer service available in ACE is the ACE

Distribution Service. This daemon takes in an input data stream and a set of known

destination services and forwards this data onto a set of one or more other services

that request that data.

 Below is an example of a distribution daemon working to supply a set of ACE

services with a video stream from a video capture service.

Video
Capture
Service

ACE
Service

ACE
Distribution

Service

ACE
Service

ACE
Service

FIGURE 14: A DEPICTION OF AN ACE DISTRIBUTION SERVICE FORWARDS DATA FROM

ONE SOURCE TO ONE OR MORE ACE SERVICES.

 41

4.14 ACE Network Logger Service

 Last but not least is the ACE Network Logger. This service is used mainly for

security and debugging purposes within the ACE system. This service simply stores

service activity information within a set of logging files. This is used mainly to

record what kinds of activities are present within an ACE system and to serve as a

history so that, if necessary, system administrators can investigate them for security

holes or system bugs. An example of this would be an attempt of an invalid user to

log into the system. If an unknown user attempts to log into the system an invalid

identification error message along with pertinent details would be sent to the ACE

Network Logger for recording (via ACE notifications). If this persisted (more than

one attempt in different days) proper action could be taken to prevent the user for

tampering with the system.

4.15 A High-Level Service Example

Suppose a high-level audio system needs to be built. It is needed to connect

the audio signals of two remote sites/rooms and also include the output of a local

ACE service (as audio output) so that audio conferencing could be performed.

Furthermore, the conversation that is taking place needs to be recorded. A two-way

audio stream connection in between the two sites is to be constructed. It needs to be

 42

free of feedback and allow other local ACE services to pick up on possible voice

commands to the local ACE by users in the rooms.

Consider the setup in figure 15 of the following basic ACE services:

Audio
Mixer

Echo
Cancellation

Distribution
Service

Audio
Mixer

Audio
Recorder

Audio
Play

Speech
to

Command

Distribution
Service

Echo
Cancellation

Audio
Mixer

Audio
Capture

Audio
Capture

Text
to

Speech

Room: hawk

ACE
Service

ACE
Service

Cancel Echo
of local audio
from remote site

Cancel echo of remote audio on
signal sent to remote site

To remote site
audio input

Remote site
audio input

FIGURE 15: AN EXAMPLE OF HOW BASIC ACE SERVICES CAN BE COMBINED TO

PERFORM HIGH-LEVEL AUDIO STREAMING, CONFERENCING, COMMANDING, AND

RECORDING.

1) Audio Mixer

Combines multiple audio signals into one audio signal/stream.

2) Text-to-Speech

Converts text messages into an audible voice signal.

3) Echo Cancellation

 43

Removes redundant audio signals (with an arbitrary amount of delay) from

an input audio signal.

4) Distribution Service

Distributes a given signal/stream to a set of known ACE services wishing

to receive the data.

5) Audio Recorder

Records on hard media a given input audio stream.

6) Audio Play

Plays an input audio signal on an output device such as a speaker.

7) Audio Capture

Captures an audio signal from a microphone and digitizes it so that it may

be streamed across the network.

8) Speech-to-Command

Analyses an input audio signal for specific voice commands and converts

them, if any, to a specific and well-known ACE service command

message.

 From the diagram above, it is clearly visible how audio mixer services along

with distribution services can create a two-way audio stream allowing two-way

communications in between the sites.

 Also, echo cancellation services may receive both audio signals from both

directions in order to correct for audio feedback.

 44

 An audio recording service connected to the distribution service allows the

entire conferencing conversation to be recorded for historical purposes.

 Finally, text-to-speech and speech-to-command services can be placed at the

ends of the communications streams in order to provide ACE users with an

interactive interface to commanding and receiving responses from local active ACE

services.

 45

Chapter 5

 ACE User Applications

 As has just been demonstrated, with the basic ACE services in place, other

high-level services can then be constructed to provide users and administrators with

easier access to the environment. These applications include user-friendly graphical

interfaces to devices and services, legacy applications integrated with ACE, general

purpose, communications, and data transfer applications, and administrative

applications used to register users, delegate authority, and control ACE specific data.

 In section 3, an example of a graphical user interface for controlling devices

and services within ACE was demonstrated. Other legacy applications are also used

in ACE. These applications were integrated and/or modified to be part of ACE.

Some of these applications include VNC (Virtual Network Computing) from AT&T

labs [9] and Gnome O-Phone [10]. Finally, some other ACE built applications have

been included in the ACE system to utilize ACE resources and capabilities. These

include audio & video capture and camera and projector control services.

Before delving into these applications, how these applications can be run

within ACE (temporary, restart, and robust execution) must first be examined.

5.1 Temporary Applications

 46

 Within ACE any general-purpose application that is run on a user workspace

or on an ACE machine is considered a temporary application. This is mainly due to

the fact that such applications are not vital applications for the existence and

operation of an ACE.

 Examples of such applications are word processors, Internet browsers, office

utilities, etc. These applications are allowed to crash and it is irrelevant to the ACE

system as a whole whether or not these applications are executed again.

5.2 Restart Applications

 Restart applications are those that need to be running within ACE in order for

proper execution of ACE services but are allowed to crash or stop running for a small

interval of time and must then be restarted.

 Examples of such applications can be a user’s default workspace, an ACE

camera control service, the network logger (even though some activity information is

lost), etc.

 For this reason, these applications must be closely watched by other ACE

services in order to make sure they are up and running and be restarted in case of a

crash. Such a service has not yet been implemented but the ACE infrastructure

makes this possible and easy to do. Notifications can be utilized to alert such watcher

services of closed applications and can also work in conjunction with the ASD and

the WSS to make sure such restart applications are up and running.

 47

 This type of service is the next step in our current development of ACE to

ensure that applications that need to be up are always up and that they are restarted in

case of a crash.

5.3 Robust Applications

 Robust ACE applications are those that are extremely vital to the proper

execution of ACE services and functioning of the system as a whole. Such

applications must not be allowed to crash, can be moved from one host to another

with minimal to no interruption of service, or have a backup redundant instance of the

application ready to take over in case it does stop running.

 Such applications are ACE user management applications (that register and

identify users and distribute authorization), services such as the ASD and AUD, the

workspace server, etc. If any of these applications die for a long period of time the

consequences could be a partial to complete halt of ACE itself.

A basis for maintaining robustness of applications within ACE, as for restart

applications, has also not been fully implemented in our current version of ACE.

This endeavor is a complex one and must be developed closely with the work being

done within the persistent store. This is also in its initial stage and further

developments are still to come.

 48

5.4 VNC & ACE User Workspaces

 For a good part of this paper, the concept of user workspaces and how these

are managed and utilized were discussed but no thought was given to what actually

generates and controls a user’s workspace. This is where VNC (Virtual Network

Computing) from AT&T labs comes in [6].

 This legacy application was taken, and its use slightly modified to fit the ACE

infrastructure. VNC is used to emulate user workspaces and redirect them to

appropriate ACE access points around the network.

VNC works in a client-server fashion. The VNC server as it is called, is

responsible for actually housing or running the user’s workspace, maintaining all state

information, and accepting input and output to the workspace when it is being

viewed/utilized by a user. The VNC client, or VNC viewer as it is called, is simply a

client program that runs remotely on a simple network access point and connects to

the VNC server. The server then redirects all I/O to that client/viewer thus allowing

the user to remotely see and command his/her workspace that is running at the server

location. Of course that in order for someone to access a workspace (i.e. run the

VNC viewer) he/she must provide the proper user password to the VNC server so that

proper access can be given. VNC also allows the user to have more than one running

workspace at the VNC server. This way a user may have multiple workspaces for

running different applications.

 49

 The diagram below shows a simple schematic of how VNC works by

redirecting I/O to remote machine viewers.

VNC Server

User
Workspaces

VNC Viewer

VNC Viewer

FIGURE 16: HOW VNC WORKS TO PROVIDE VIRTUAL USER WORKSPACE ACCESS FROM

REMOTE ACCESS POINTS AROUND THE NETWORK WHILE RUNNING ON A SEPARATE

HOST MACHINE.

 VNC usage was slightly modified for ACE. As seen before, the WSS is

responsible for managing user workspaces. It creates them, names them based on

whose workspace it is and where it is running, and deletes them when needed. It

must also verify user VNC passwords so that only valid users may see and access

their running workspaces. The normal execution of a VNC viewer requires that the

user input his/her password directly to VNC. Unfortunately, within ACE, the VNC

 50

sessions are managed and controlled by the WSS. For this purpose, the VNC

password files were directly accessed and modified by the WSS when new

workspaces were created and when users accessed their workspaces from remote

access points. This guaranteed that the password verification by VNC was made

invisible to the normal ACE user. Simply by being a valid ACE user and properly

identifying him/herself with one of the ACE identification devices/services (e.g. FIU

unit), the user is allowed to access his/her workspaces via the WSS and VNC.

 As was mentioned before, more insight shall be given to ACE workspaces and

how these are run with the examples in section 10 below.

5.5 O-Phone & ACE Communications

 Another open source, legacy application incorporated into ACE is called the

O-Phone. This application enables full-duplex telephone communication over IP.

Thus allowing users to call each other and even external phones from their

workspaces. This frees up the user from having to be near a phone to make a call. If

a valid ACE user is near an access point, he/she can bring up a workspace and make a

phone call.

No major modifications were done to this application in order to incorporate it

in ACE. It was merely adapted to work properly with our local network and can thus

be run from any user workspace as a regular system application. No ACE GUI has

 51

yet been developed for this application for ease with ACE usage. Creating an ACE

GUI for this type of application is next in current ACE developments.

 52

Chapter 6

 ACE Persistent Store

 For ACE to be deemed the robust and long-lived user environment for both

data and running applications, a method of securely storing and retrieving data and

application state information and guaranteeing their persistence needs to exist. For

this reason it became necessary to develop persistent store structure and service for

ACE.

 The initial conceptual framework entails the use of three completely

redundant and interconnected cluster of server systems.

 53

ACE
Persistent

Store
Server 1

ACE
Persistent

Store
Server 3

ACE
Persistent

Store
Server 2

Three, completely
redundant storage
systems guarantee
safe and up to date

storage of
information.

FIGURE 17: THE FIRST CONCEPTUAL FRAMEWORK OF HOW A CLUSTER OF THREE

PERSISTENT STORE SERVERS SHALL WORK TOGETHER TO PROVIDE REDUNDANT

AND ROBUST STORAGE OF ACE SERVICE AND APPLICATION STATE, PROVIDING THE

FOUNDATION FOR ACE ROBUST APPLICATIONS AND SERVICES.

 The three storage systems above perform constant data synchronization in

order to ensure that the same exact data is stored within each of their individual

storage areas.

 If for any reason, one or two of the servers fail or crash, ACE services may

still access the stored information within them. Furthermore, by having three separate

storage servers, it is possible to remove potential bottlenecks of many ACE services

attempting to access information on a single storage server at the same time.

 54

 ACE utilizes this redundant storage systems in order to safely maintain and

always have available all the user, service, and configuration information necessary to

make ACE a robust architecture on which services and applications can run and be

recovered.

 Although this may seem to be a unique and completely different component of

the ACE architecture, it is simply another service within ACE. This service utilizes

the framework depicted above to provide robust and secure state information for other

services and clients within ACE so that if user workspaces, applications, and robust

services fail, they can quickly be recovered to their last known state. This type of

service utilizes a straightforward object-oriented namespace approach to storing

application and program state information and forms the basis for supporting restart

and robust applications as seen in sections 8.2 and 8.3 above.

 Initially, development of this persistent store service framework was intended

to include M-VIA (Modular Virtual Interface Architecture) [11] as its network cluster

communications interface. This idea has currently been abandoned and other routes

are currently being investigated.

 55

Chapter 7

 ACE Scenarios

 After touching on the ACE architecture and the main design components that

work together to make ACE a robust and interconnected framework of services, some

ACE scenarios can now be developed. These scenarios shall illustrate how the pieces

described above fit together to supply a coherent set of services and capabilities. All

of these scenarios have already been attempted and have successfully run in the

current version of ACE.

7.1 Scenario 1 – New User & User Workspace

 John Doe is a new employee at ACECo. After getting settled in and getting to

know his new work environment he presents himself to the system administrator to

have a new ACE user account established for himself.

 The administrator obtains from him all the pertinent information and creates a

new Unix user account for John. Then, he adds this new user as a new ACE user as

well. Utilizing a simple GUI, the administrator inserts John and his new account

information into the user database via the AUD service. His fingerprint is scanned

and added as well. As John is being added as a new user, the GUI also communicates

with the Workspace Server. The WSS verifies that this is a new user by checking that

 56

the user information within the AUD is empty. This prompts the WSS to create a

new VNC server session (i.e. the user’s default workspace) for John. To do so, the

WSS requests from the SAL that a new VNC session for user John be started

somewhere. The System Application Launcher works in conjunction with the HAL,

SRM, and HRM to create a new default workspace for John. First, the SAL inquires

with the SRM to find out which machine in the ACE network is most suitable (has the

most free resources or is best for a given application) for running the VNC server

application. The SAL has this information with it from the regular communications it

holds with all the HRMs in the network to obtain host resource information. Once a

suitable host has been selected, the SAL requests from the HAL on the selected host

to launch a VNC server application as the default workspace for user John. Figure 18

below shows the connections between the services for a better understanding of these

steps.

 57

FIGURE 18: A DIAGRAM OF HOW ALL ACE SERVICES ARE INTERCONNECTED TO

PROVIDE ACE USERS WITH IDENTIFICATION CAPABILITIES AND USER

WORKSPACES.

 With this being done, John now has a default workspace constantly running

on the selected host.

 58

7.2 Scenario 2 – User Identification

John is to give his presentation in the ACE conference room in 30 minutes. In

order to prepare for his presentation he goes to the conference room and identifies

himself at the podium computer by pressing his thumb to the fingerprint scanner next

to it. As soon as this is done, the user ID daemon, which constantly polls the FIU

(Fingerprint Scanning Unit) daemon, requests from the FIU that the user be verified.

In John’s case, he is a valid ACE user and is thus positively identified. This causes

the ACE User ID service to send out a notification that user ‘John Doe’ has been

identified at the ACE conference room to the ID Monitor service. The ID Monitor

service then updates John’s current location with the AUD. At this point John Doe

has been successfully identified and other services can now be invoked.

7.3 Scenario 3 – User Workspace

 Once John Does has been successfully identified, the ID Monitor service is

responsible for communicating with the Workspace Server so that the user’s

workspace can be brought up to the user’s current access point.

 The WSS invokes the SAL to start a VNC viewer session at John’s current

location (which was obtained from the ID Monitor) so that his default workspace may

be brought up. The SAL then invokes the HAL on John’s current host. This in turn

starts John’s VNC viewer application so that he may access his default user

 59

workspace. Effectively, John’s workspace pops up on his screen at the conference

room podium and he goes on to access his presentation files and setup his speech.

Diagram 19 below shows the entire process from user identification to displaying the

user workspace. The red circle on the left labeled FIU is where the user would

identify him/herself.

Host Resource
Monitor

Host Resource
Monitor

Host Application
Launcher

User ID

User Display

System Application
Launcher

System Resource
Monitor

ID Monitor

User Database

Workspace Virtual
Display

(default Workspace)

FIU

ACE Host

User applications always running on some host

Processes running after boot

Workspace
Display

Launch
Viewer

Launch
Viewer

Processes running after User Identification

Launch Viewer

ID Info

Launch

Host
Resource
Monitor

System
Resource Monitor

Host Resource
Monitor

Host
Resource
Monitor

Host
Application
Launcher Host Application

Launcher

Host
Application
Launcher

System Application
Launcher

Workspace
Server

ID Monitor

User ID

Host
Resource
Monitor

Host Application
Launcher

Host
Application
Launcher

User Database

1

2
3

4

5

Host: bar Host: tube

Host: rod

6

7

Host Application
Launcher

Workspace
Selector

FIGURE 19: THE STEPS EXECUTED BY AN ACE TO VERIFY A USER AND DISPLAY THE

USER’S WORKSPACE AT HIS/HER ACCESS LOCATION.

 60

7.4 Scenario 4 – Multiple User Workspaces

 Can a user have more than one workspace? The answer is yes. ACE users are

not limited to a single workspace (as has been mentioned earlier). The default

workspace is created for all users so that he/she may have at least one valid and

working workspace through which to access the network and its resources.

In creating new workspaces, the same basic ACE services are utilized to

launch, maintain, and display the running workspaces. The only significant

difference is that now users are presented with a workspace selector when a user

identifies him/herself (figure 19 above). This selector works in conjunction with the

WSS to find and display a workspace selected by the user.

 Let’s say that John has been working on his presentation from a separate

workspace that is not his default workspace. So now, John has 2 valid running

workspaces. As soon as he identifies himself a small workspace selector GUI pops

up on the access point screen showing him a list of all workspaces running and

available. He selects the secondary workspace he owns and that causes the WSS to

attempt to launch the viewer of this workspace. It communicates with the SAL to do

so.

 Soon enough, John’s secondary workspace is up and visible on the podium

access point and John continues to setup his presentation.

 61

7.5 Scenario 5 – ACE Services & Devices

 One last thing needs to be done before John can get his presentation ready to

go. He must turn on the projector and set the camera to point towards the podium.

Using his workspace, he starts the ACE device GUI. This GUI communicates with

the ACE Room Database service to find out what devices are present within the

room, where they are, and what current settings they have.

John selects the projector from a graphical representation of these devices.

This pops up another screen that shows the different controls that can be set for the

projector. He uses it to turn the projector on and to output the workspace to the

screen. This effectively causes the GUI program to communicate with the projector

daemon and send appropriate messages to execute John’s commands. Then, he

selects the camera output to stream to the projector as a picture in picture output.

Finally, he selects the camera and uses it to control the camera and pan, tilt, and zoom

it towards the podium.

 All of these commands performed by John are fundamentally simple daemon-

to-daemon communications that are used to execute actions. Client and daemons

automatically find each other via the ASD and communicate with each other to obtain

and supply the proper information to perform a given task. The next stage in

development for ACE is to have all the above described commands be given by voice

and gestures.

 John is now ready to give his presentation.

 62

Chapter 8

 Related Work

As was previously stated, the work being done here is one among many other

research projects currently being developed to create the next generation of widely

accessible and robust Internet applications and services. Next, a brief analysis is

made on the main aspects of some of these other projects in order to gain insight into

their principal differences so that possible improvements can be included in future

ACE developments.

The projects analyzed here have been chosen due to their similarity to ACE,

how complimentary their work is to that developed for ACE, and how insightful they

are to future ACE solutions.

8.1 UC Berkeley – Ninja Project

At the Computer Science department at UC Berkeley, important work has

been done in the area of next generation Internet based applications and devices. This

work is called the Ninja project [6].

The main focus of Ninja is that of the seamless integration of services and

devices that work together automatically to provide high-level services to its users

 63

within a robust and long-lived cluster of workstations and accessed easily over the

Internet.

The Ninja architecture [18] consists primarily of four components: bases,

units, active proxies, and paths.

• Bases are clusters of workstations that serve as the computing basis for

service execution and state information storage.

• Units are the numerous different devices that are to be integrated into the

Ninja next generation Internet concept (e.g. PDA’s, cellular phone, pagers,

sensors, etc).

• Active Proxies are transformational elements or interfaces to the units

allowing them to be integrated with the Ninja service architecture.

• Paths are abstractions to the concept of composing more complex services

from a set of interconnected lower-level services, thus creating a conduit

or path through which data can be streamed through from service to

service, providing clients with unique and complex capabilities.

Ninja is very similar to ACE in many aspects. Like ACE, Ninja focuses on

the concept of easily accessible and reliable network of services (whether those be

applications or devices). Within ACE, the ASD is the service responsible for service

registration and is where services and clients go to find other services. In Ninja, that

similar service is called the SDS – Service Discovery Service. The bases in Ninja

provide services and applications with persistent state information in case of crashes

 64

and system failures in much the same way that our persistent store architecture saves

the same state information via redundant server systems. Like ACE, the Ninja

architecture also facilitates for the integration of various heterogeneous devices

(“units”) and services within the network. Finally, the concept of creating modular

and simple services and composing them into “paths” [19] to generate high-level and

complex functionality is also the same within ACE.

Ninja on the other hand has some differences that are worthwhile examining.

First, Ninja’s active proxies are unique interfaces to user devices called units.

These proxies effectively translate the information to and from these units so that

proper unit to service communication can take place. In the ACE world, such

translation is built in to the ACE service that is specifically built to control and

intermediate for unique devices. The currently implemented interfaces for the

devices in ACE are built in C and utilize a Java wrapper that allows JNI calls to

service methods. Effectively, ACE devices are fully integrated ACE services. At the

service level, no distinction is made between software-driven and device rendered

ACE services.

Another main difference found is that in Ninja, service communication is done

primarily via object serialization and RMI. As was previously discussed, ACE

utilizes a unique ACE language constructed for ACE services and a language parser

to interpret messages sent from one service to another. This approach makes ACE

communications much more lightweight than that of Ninja’s bytecode transmissions,

which may be large depending on the service being rendered.

 65

As previously stated, Ninja’s bases are clusters of workstations that are

utilized for computation and storage. Unlike ACE, Ninja groups these bases together

and all services execute on these clusters and communicate to devices via the Internet

or local area network. ACE, on the other hand, attempts to distribute its computing

power. Regular workstations spread throughout the environment may execute ACE

services. This not only reduces network traffic to local devices (devices that are

physically close to the workstation providing the service) but also makes response

times to these local services much more efficient.

Finally, Ninja attempts to fully automate the construction of high-level

services via their path concept and the use of XML descriptors accessed via the SDS

and XSet services [19]. This idea of Automatic Path Creation (or APC for short) has

no equivalent within ACE. Current developments in ACE call upon programmers to

hard code what services to look for when specific complex capabilities are needed. In

ACE, services cannot do that for themselves. They can of course connect to each

other and work together to provide complex services, but currently they cannot

determine on their own what services are needed to provide specific high-level

functions.

Ninja has come a long way in developing an infrastructure for ubiquitous

computing and further examination into their work may prove very useful for

improvements in the ACE architecture.

 66

8.2 MIT – Oxygen Project

Another significant project developed at the Laboratory of Computer Science

and the Artificial Intelligence Laboratory at MIT is project Oxygen. This

multimillion-dollar project aims at adapting computers to the human world making it

easy for humans to interact with computers by visual cues and voice commands.

Oxygen attempts to make access to computational power pervasive and natural to

anyone. Furthermore, they envision making computers intelligent enough to interpret

and adapt to the needs of human users. Oxygen enables people “to do more by doing

less.” [20].

Oxygen’s goals are to create an environment where computing is pervasive

(found everywhere), embedded (sensing and affecting our world), nomadic (where

users and computation are free to move about), and eternal (always present, never

shutting down nor rebooting).

The main framework of Oxygen is built upon the notion of three important

components. The handheld H21 computers, the built in wall computers E21s (or

enviro21s as they are called), and the active and self adapting network N21 that

interconnects these computational units [7][21].

The H21s, or Handy 21s, are all-encompassing handheld devices that can

change from a wireless Internet connection to a pager, to an AM/FM radio, to a

walkie-talkie, TV, cellular phone, etc. It also contains a display, camera, IR

connector and radio antenna. It is low power, low bandwidth, with limited

 67

computational capabilities, and mostly software driven. The H21s are the universal

interfaces of users to the Oxygen world.

The E21s are computers built into the rooms and environments that provide

users with access to higher computational power and bandwidth. These E21s can

communicate with the H21s for remote access and may directly control devices such

as phones, faxes, sensors, cameras, and microphones.

Finally, the decentralized networks called N21s provide adaptive network

topologies that react to changes in the network, in the devices connected to them, and

to changing conditions such as congestion, errors, and varied traffic. They also allow

for automatic resource and location discovery without manual system administration

and do all of the above in a secure and authenticated fashion. Although not explicitly

detailed, it is likely that an Active Networks approach may be taken for this purpose.

Oxygen envisions a world where web bots, computer secretaries, and task

automation in conjunction with a state-of-the-art speech recognition system allows

users to naturally converse with computers and obtain what they need from them. By

saying things like “Turn up the heat every morning at 7am” or “Find me the

presentation Maggie gave me two days ago” computers shall understand the

commands, interpret them, and make inferences based on users’ preferences and

histories to obtain exactly what they asked for. Again, the end goal: “doing more by

doing less.”

Oxygen’s basic conceptual framework is very different from that of ACE.

Much of Oxygen’s foundation is heavily based on the N21s and their adaptive and

 68

automatic nature and on the H21s and E21s flexibility and computational power.

They centralize this power to these two units and rely on the N21 network to be

intelligent enough to efficiently interconnect them and adapt to changes in the

environment.

ACE is not limited to only a couple of devices and does not attempt to make

an all-encompassing handheld. Rather, ACE attempts to base computational power to

heterogeneous systems distributed throughout the network. It also maintains the

responsibility of supplying services, adapting to changes, and doing so in a secure

manner to service daemons running on these machines. Oxygen depends on the

versatility and power of the H21s and E21s to provide any and all services and that of

the N21s to provide them with adaptive and ubiquitous access to these services. This

is not to say that Oxygen’s approach is wrong, on the contrary, it is a novel and

unique approach but their sole dependency on the H21s and E21s may become

limiting in the future. On the other hand, the development of a self-organizing and

intelligent network that creates collaborative regions among Oxygen users, although a

complex task, may prove to be a very useful and powerful foundation.

8.3 IBM Corporation – WebSphere

Within the past few years, IBM Corporation has been working on a new way

to facilitate the integration of home and business devices to the Internet. At IBM’s

Pervasive Advanced Technology Laboratory in Austin, Texas, researchers have

 69

created a complete working prototype of the future home, kitchen, and automobile.

They have created an environment where all devices within it are directly connected

to the Internet and all have their own unique URLs. Users can locally or remotely

control these devices by simply logging onto the Internet [22].

Behind all of this is IBM’s WebSphere Everyplace Server. This server is an

integrated software platform providing applications and devices with integration,

connectivity to the Internet, and with a realm of services ranging from security and

authentication, device and subscriber management, content transformation, and data

synchronization to messaging systems [23]. This platform aims at simplifying

connectivity and large-scale device integration for current enterprises and service and

content providers.

It also allows authenticated web-enabled applications and devices to connect

to it via third-party or their own wireless gateway and utilize their services. This is a

Java based software platform and utilizes HTTP as its main connectivity protocol to

third-party gateways and wireless devices. Authentication is also carried out over

HTTP [24].

The basic network and communications framework of this project greatly

differs from that of ACE in its communications protocol and in that it attempts to

centralize device and applications integration and control to a main server or cluster

of servers that oversee all connections and users. Although this approach has proven

scalable through simulations [23] it may not be appropriate or viable for small-scale

purposes and environments. Furthermore, it lends itself to dependency on IBM

 70

developers to extend its capabilities and include new services, making it impossible

for outside developers to create and integrate their own services. Also, this

framework does not manage device state information and expects the outside devices

and applications to handle their own state persistence.

Although this platform is an attempt at simple and large-scale integration of

Internet applications and devices and has a very different architecture, it is rich in

ideas and possibilities as far as services and potential applications of pervasive

computing are concerned. New developments within IBM’s WebSphere may become

very useful to future ACE developments and in extending its concepts.

8.4 Sun Microsystems – Jini

Another important development in this area was made by Sun Microsystems –

the Jini technology [25]. The main idea behind Jini is that its very simple framework

gives developers the freedom to create network-enabled services that may be

implemented in either software or hardware.

Jini is built upon Sun’s own Java interface and utilizes Java’s RMI (Remote

Method Invocation) and object serialization for clients to utilize services over the

network.

The basic Jini framework consists of network services, clients, and a lookup

service for finding other services on the network [26][27]. A multicast mechanism is

used to find the lookup service either for service registration or for other service

 71

lookups. Network services wishing to be registered with the lookup service or “join”

the network of services must first find the lookup service via a multicast message and

register their interface attributes (what methods they can execute) with it. Clients

wishing to “discover” services also utilize a multicast mechanism to find the lookup

service and then query the lookup service for specific well-known service method

interface attributes. Once a service is found, a service proxy is passed onto the client

and the service is rendered directly to the client via RMI.

Jini also allows for service leasing within the lookup service and for an event

driven model allowing other services to be notified of specific events in the network.

Furthermore, Jini utilizes its own implementation of ACL’s and principals for trust

management within the network.

At first glance Jini contains many elements that are similar to those developed

within ACE – a lookup service, service discovery, service lease times, event

notifications, freedom of service development for software and hardware

applications, a service/client duality allowing services to become clients and utilize

other services, and the ability to utilize non-Java services via Java interfaces.

Although the above-mentioned characteristics are very advantageous to the

development of ACE, the decision was made not to use Jini within the ACE

architecture due to some of its non-desirable traits. Jini is still at its very early stages

and desirable devices and software interfaces for basic services have not yet been

released. Also, as Jini is licensed under the Sun Community Source License [28] that

poses as an obstacle for future code modification and redistribution for developments

 72

such as potential mobile sockets currently being investigated for ACE. Finally, Jini

utilizes its own trust management implementation thus the utilization of the KeyNote

Trust Management system (which is very desirable for our applications) becomes

difficult or impractical.

Therefore, although Jini provides a very flexible and simple architecture for

ACE-like capabilities, it is still very new and also restrictive as far as security,

modification, and redistribution are concerned.

 73

Chapter 9

 Improvements & Future Work

The ACE project was started early in the spring of 2000 and although much

development work has been done to lay its foundations – the main daemon

infrastructure, and the basic ACE framework services – much design and

implementation work remains to be done.

Currently, the main challenge for development of ACE deals with creating a

robust and reliable system of services that can detect and recover from failures and is

scalable to serve hundreds and even thousands of users. This task is composed of

many different research areas. First and foremost, a service structure must be created

to detect and handle system and service crashes, quickly identifying failures and re-

initializing restart and robust applications and services. Secondly, research and

development of mobile sockets must be integrated with the current ACE service

infrastructure to handle downed ACE services allowing clients to quickly resume

their tasks with other service instances and to ensure service mobility. Thirdly,

continued work must be done to implement and integrate a persistent store

mechanism within the service daemon framework to ensure that state information is

maintained for robust services and applications. Also, the authentication capabilities

of KeyNote’s credentials within ACE must be extended to allow for more flexible

authentication criteria (which is limited at its current implementation). Finally,

 74

significant amount of testing must be done to ensure the scalability of the system and

that ACE can fulfill the concept of a long-lived system. Central services such as the

ASD, AUD, WSS, etc must be fully tested for large communication loads,

persistence, and extended execution time.

If ACE succeeds in becoming the long-lived, reliable, robust, secure, and

widely accessible system that it is envisioned to be, then further developments can be

made in the areas of speech recognition, natural language analysis, gesture and face

recognition, audio triangulation, personnel tracking, multi-modal user interaction,

multi-format data streaming, real-time written and spoken language translation, task

automation (e.g. properly executing the command “print this out to the nearest

printer”), and creation of intelligent devices and applications such as adaptive camera

systems (i.e. automatic control of image quality), automatic climate control systems,

lighting control systems, personal virtual administrative assistants, etc.

It may also be advantageous to further investigate and integrate some concepts

taken from other projects such as Ninja and WebSphere into ACE. Some of these

concepts include Ninjas’s Automatic Path Creation with XML and IBM’s user

interaction devices and modalities such as ACE enabled cars, coffee makers, digital

art, entertainment systems, etc.

 75

 Chapter 10

 Contributions & Innovations

ACE, its architecture, and its implementation have been made possible by the

contributions of many professors, students, and staff alike. Many of the components

that have been here presented were created by individual and group efforts of the

ACE development team, including my own.

Additionally, ACE itself presents researchers and developers with some

unique and innovative design components that are important and worthwhile

considering.

10.1 ACE’s Innovations

The ACE architecture presents many advantages and qualities that make it a

flexible, robust, and lightweight system. It is also a system in which the development

of new applications and services are made easy and fast. Some of these qualities and

design approaches are unique within the world of the next generation Internet and

significant to point out.

Some of these unique qualities include:

• A modular service daemon structure, making the integration and development

of new and heterogeneous services and technologies simple for developers.

 76

• An ACE service daemon hierarchy that makes the development and alteration

of service elements effortless. A service hierarchy unique within the realm of

pervasive computing.

• An ACE command language and its corresponding parser (developed

explicitly for ACE and geared towards service communications) that allow for

very lightweight service-to-service communications. A construct unseen in

any other pervasive computing project and with the potential of making ACE

a competitive architecture efficiency-wise.

• An architecture that aims at open source development unlike many similar

projects that have developed their own proprietary code and utilized licensed

and restricted applications. ACE has integrated a variety of open source

applications with its architecture and aims at open redistribution objectifying

unrestricted development and improvement of its architecture and services.

An approach that may prove advantageous for allowing ACE and its original

ideas to improve and percolate through to the Internet of the next generation.

These unique qualities make ACE a novel system and provides singular

contributions to the work currently being done in the area of pervasive computing.

 77

10.2 Personal Contributions

The ACE effort includes some of my own personal work. Listed below are

some of my main contributions to the ACE effort along with references to pertinent

internal ACE documentation.

1. Assisted in the design of and completely documented the ACE command

language.

(Internal Documentation File Names: ACELanguageReqs.doc,

ACELanguageSpecs.doc, ACECommandObjectSpecs.doc)

2. Design, documentation, and implementation of the ACE command language

parser.

(Internal Documentation File Names: ACEParserDesign.doc,

ACEParserEnumTypesDesign.doc, ACEParserCmdArgExtentSpecs.doc,

ACEParserSpecifications.doc)

3. Design, documentation, and implementation of the ACE Service Directory.

(Internal Documentation File Names: ACEServiceDirectorySpecs.doc,

ACEServiceAttributesSpecs.doc, ACEServiceClassHierarchySpecs.doc,

ACEServiceDirectoryDatabaseDesign.doc,

ACEServiceDirectoryDesign.doc,)

4. Design, documentation, and implementation of the ACE User Database

service.

 78

(Internal Documentation File Names:

ACEUserDatabaseServiceRequirements.doc,

ACEUserDatabaseDBDesign.doc, ACEUserDatabaseServiceDesign.doc,

ACEUserAttributesSpecs.doc,

ACEUserDatabaseServiceSpecifications.doc)

5. Development and documentation of a standardized script for regression

testing of ACE services.

(Internal Documentation File Names: ACECodeDebugRequirements.doc,

ACERegressionTestingRequirements.doc, ACEErrorConventionSpecs.doc,

ACETraceSpecifications.doc)

6. Working directly within the ACE architecture development team contributed

with ideas, suggestions, and solutions in brainstorming sessions as the ACE

architecture grew and took shape.

 79

Chapter 11

 Conclusions

In this paper many aspects of the ACE architecture have been examined.

These aspects included ACE users and how humans interact with the environment,

the basic daemon framework and its capabilities, security and authentication within

ACE, user applications and legacy systems incorporated into ACE, and the base ACE

services implemented and currently under development. Basic scenarios depicting

the interaction of users and ACE systems were covered and current developments by

other corporations and universities in the area have been discussed.

Clearly ACE has many unique advantages. Its modular service daemon

structure and hierarchy simplifies service development and allow for flexible higher-

level service construction. The daemon’s built in notifications capabilities allow for

desired event-driven models. The daemon’s multithreaded nature allows services and

the underlying system to take advantage of execution concurrency. Finally, the ACE

user workspaces approach is a good compromise between the well-known desktop

PC’s and the full virtual data and services integration of the future.

 It is clear from the ACE architecture, its novel capabilities, its advantages, and

from the work done in other similar projects that ACE and its daemon framework not

only have potential to become the envisioned pervasive and robust system but to also

be a flexible, modular, and easily adaptable platform on which to develop new

 80

services and capabilities. Moreover, it is also an architecture that allows developers

the freedom to expand its capabilities and applications in any imaginable way. ACE

has become a very worthwhile infrastructure on which to build. At its current state,

ACE begs continued exploration, experimentation, and improvement.

 81

Bibliography

[1] IBM Corporation. Pervasive Computing Website.

http://www-3.ibm.com/pvc/index.shtml/.

[2] International Conference on Pervasive Computing. Pervasive 2002.

http://www.pervasive2002.org/.

[3] Brown, Eric S. MIT Technology Review. “Project Oxygen’s New Wind –

Q&A with Rodney Brooks and Victor Zue.” December 2001.

http://www.technologyreview.com/articles/4152.asp/.

[4] Anderson, David P. and Kubiatowicz, John. Scientific American Article.

“The Worldwide Computer.”

http://www.sciam.com/2002/0302issue/0302anderson.html/.

[5] Information Telecommunication Technology Center – University of Kansas.

Ambient Computational Environments Project home page.

http://www.ittc.ku.edu/~ace/.

[6] UC Berkeley Computer Science Division. Ninja Project home page.

http://ninja.cs.berkeley.edu/.

 82

[7] MIT Laboratory of Computer Science; MIT Artificial Intelligence Laboratory.

Oxygen Project home page.

http://oxygen.lcs.mit.edu/.

[8] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis.

“The KeyNote Trust-Management System, Version 2.” Request For Comments

(RFC) 2704, September 1999.

http://www.cis.upenn.edu/~keynote/Papers/rfc2704.txt/.

[9] AT&T Laboratories Cambridge. VNC – Virtual Network Computing home

page.

http://www.uk.research.att.com/vnc/.

[10] GNU Gnome. O-Phone (G-Phone) home page.

http://gphone.sourceforge.net/.

[11] National Energy Research Scientific Computing Center home page. “M-VIA:

A High Performance Modular VIA for Linux.”

http://www.nersc.gov/research/FTG/via/.

 83

[12] Dallas Semiconductor Designs. iButton website.

http://www.ibutton.com/index.html/.

[13] Sony Corporation. FIU – Fingerprint Identification Unit model FIU-001/500

home page.

http://www.iosoftware.com/products/integration/fiu500/.

[14] Sony Corporation. FIU – Fingerprint Identification Unit model FIU-710

home page.

http://www.sony.co.jp/en/Products/puppy/.

[15] Compaq Corporation. iPAQ handhelds website.

http://athome.compaq.com/showroom/static/iPAQ/handheld

_jumppage.asp/.

[16] Sony Corporation. Vaio notebook series website.

http://www.sonystyle.com/vaio/grx/index.shtml/.

[17] Sony Corporation. Vaio picturebook notebook series website.

http://www.sonystyle.com/vaio/picturebook/index.shtml/.

 84

[18] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David

Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz,

Z.M. Mao, S. Ross, and B. Zhao. The Ninja Architecture for Robust Internet-

Scale Systems and Services. Available at:

http://ninja.cs.berkeley.edu/pubs/pubs.html/.

[19] Sirish Chandrasekaran, Samuel Madden, and Mihut Ionescu. Ninja Paths: An

Architecture for Composing Services Over Wide Area Networks. Available at:

http://ninja.cs.berkeley.edu/pubs/pubs.html/.

[20] Dertouzos, Michael L. Scientific American article. “The Future of

Computing” 1999.

http://www.sciam.com/1999/0899issue/0899dertouzos.html

/.

[21] Hedberg, Sara Reese. IEEE Intelligent Systems magazine article. May-June

2000 issue. “Intelligencer – Ubiquitous Computing.”

http://www.computer.org/intelligent/ex2000/pdf/x3002.p

df/.

[22] IBM Corporation. York, Candice A. “IBM’s Advanced PvC Technology

Laboratory.”

 85

http://www-

106.ibm.com/developerworks/wireless/library/wi-

pvc/?t=gr252/.

[23] IBM Corporation. Case-Hook, Lisa and Shaheen, Amal. “WebSphere

Everyplace Server, Service Provider Offering for Multiplatforms.” IBM

WebSphere whitepaper. September 2001. Available at:

http://www-

3.ibm.com/pvc/tech/pdf/WESSPO_20MM_User_white_paper.pd

f/.

[24] IBM Corporation. Nguyen, Chung. “Third-Party Gateway Plug-in Support

in the WebSphere Everyplace Server.” IBM WebSphere whitepaper. December

2001. Available at:

http://www-3.ibm.com/pvc/products/pdf/ThirdPartyGW-

Plugin.pdf/.

[25] Sun Microsystems. Jini Network Technology home page.

http://www.sun.com/jini/.

[26] Sun Microsystems. Jini Network Technology datasheet.

 86

http://www.sun.com/jini/whitepapers/jini-

datasheet0601.pdf.

[27] Sun Microsystems. Jini Architecture Specification document. 2001

http://www.sun.com/jini/specs/jini1_2.pdf

[28] Sun Microsystems. Sun Community Source Licensing home page.

http://www.sun.com/software/communitysource/.

